
NASA / CR-97-206264

Abstract Datatypes in PVS

Sam Owre and Natarajan Shankar

SRI International, Menlo Park, California

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under contract NAS 1-18969

November 1997

Abstract

PVS (Prototype Verification System) is a general-purpose envir<mment for <teveloping spec-

ifications and proofs. This document deals primarily with the abstract datatype mechanisnl

in PVS which generates theories containing axioms and definitions for a class of recursive

datatypes. The concepts underlying the abstract datatype mechanism are illustrated using

ordered binary trees as an example. Binary trees are described by a PVS abstract datatype

that is parametric in its value type. The type of ordered binary trees is then presented as a

subtype of binary trees where the ordering relation is also taken as a parameter. We define

the operations of inserting an element into, and searching for an element in an ordered bi-

nary tree; the bulk of the report is dew, ted to PVS prooN of some useflll properties of these

operations. These proofs illustrate various approaches to proving properties of abstract

datatype operations. They also describe the built-in capabilities of the PVS proof checker

for simplifying abstract datatype expressions.

iii

iv

Contents

1 Introduc, tion

2 Lists: A Simple Abstract Datatype

2.1 Positive type occurrence

3 Binary Trees

4 Or<tered Binary Trees

5 In-line and Emuneration Types

6 Disjoint Unions

7 Mutually Recursive Datatypcs

8 Lifting Subtyping (m Recursive Datatype Parameters

9 Rel)resentations of Recursive Ordinals

10 Some Illustrative, Proofs about Ordered Binary Trees

10.1 A Low-level Proof

10.2 A Semi-automated Proof

10.3 Proof Status

11 Built-in Datatype Simplifications

12 Some Proof Strategies

13 Limitations of the PVS Abstract Datatyt)e Me<:hanism

14 Related Work

15 Con(:lusions

1

3

4

5

14

18

19

19

21

22

25

26

39

44

44

46

48

48

49

1 Introduction

PVS is a specification and verification environment developed at SRI International.1 Several

documents describe the use of PVS [OSR93]; this document explains the PVS mechanisms

for defining and using abstract datatypes. 2 It describes a PVS specification for the data

structure of ordered binary trees, defines various operations on this structure, and contains

PVS proofs of some useful properties of these operations. It also describes various other

data structures that (;an be captured by the PVS abstract datatype mechanism, and doc-

uments the built-in capabilities of the PVS proof checker for simplifying abstract datatype

expressions. The exposition does assume some general familiarity with formal methods but

does not require any specific knowledge of PVS.

PVS provides a mechanism for defining abstract datatypes of a certain class. This

class includes all of the "tree-like" recursive data structures that are fT_ely generated by a

munber of constructor operations. :t For example, the abstract datatype of lists is generated

by tile constructors null and cons. The abstract datatype of stacks is generated by tile

constructors empty and push. An unordered list or a bag is an example of a data structure

that is not freely generated since two different sequences of insertions of elements into a

bag can yield equivalent bags. The queue datatype is freely generated but is not considered

recursive in PVS since the accessor head returning the first element of the queue is not an

inverse of tile enqueue constructor. This means that tile queue datatype must either be

explicitly axiomatized or implemented using some other datatype such as the list or stack

datatype.

At the semantic level, a recursive datatype introduces a new type constructor that is

a solution to a recursive type equation of the form T = T[T]. Typically, the recursive

occurrences of tile type nanle T on the right-hand side must occur only positively (as

defined in Section 2.1) in the type expression T[T] and the datatype is the least solution to

the recursion equation. For example, the datatype of lists of element type A is the least

solution to the type equation T = {null} + A × T, where + is the disjoint union operation

and the × operation returns the Cartesian product. The minimality of lists datatype yields

1PVS is freely available and can be obtained via FTP from /pub/pvs/ through the Internet host

ftp. csl. sr±. com. The URL http ://_w. csl. sr±. com/pvs, html provides access to PVS-related informa-
tion and documents.

2The PVS abstract datatype mechanism is still evolving. Some of the contemplated changes could
invalidate parts of the description in this report. This report itself updates SRI CSL Technical Report
CSL-93-9 so that it is accurate with respect to the alpha version of PVS 2.1. Future versions of the report
will be similarly revised to maintain accuracy.

_The abstract datatype mechanism of PVS is partly inspired by the shell principle used in the Boyer-
Moore theorem prover [BM79]. SiInilar mechanisms exist in a number of other specification and programming
languages.

a structural inductionprincipleassertingthat any list predicateP, if P is closed under the

list datatype operations, i.e., where P(null) and Vx, l: P(f) D P(cons(x, 1)), then P holds

of all lists. The induction principle also yields a structural recursion theorem asserting that

a function that is defined by induction on the structure is total and uniquely defined. By

the semantic definition of lists, the equality relation on the lists datatype is also the least

equality where the constructor cons can be regarded as a congruence. The minimality

of the equality relation asserts that the constructor cons is an injective operation from

A × list to list. As a consequence of tile minimality (,f equality on ttle datatype, one

can define accessor functions such as car and cdr on lists constructed using cons, derive

extensionality principles, and define functions by case analysis on the constructor. The PVS

datatype nmchanism is used to generate theories introdu,:ing the datatype operations for

constructing, recognizing, and accessing datatype expressi_,ns, defining structural recursion

schemes over datatype expressions, and a.sserting axioms such a.s those for extensionality

and induction.

Tim datatype of lazy lists or streams is also generated by the same recursion schenm

using the constructors null and cons but it is a co-recursive datatype (or a co-datatype)

rather than a recursive datatype in that it is the greates,*, solution to the same recursion

equation corresponding to lists. PVS does not yet have a similar mechanism for introducing

co-datatypes, and this would be a useful extension to the language. Such a theory of

sequences has been formalized in PVS by Hensel and Jacobs [HJ97] (see also tile URL:

http://www, cs. kun. nl/'bart/sequences, html).

PVS is a st)ecification language with a set-theoretic semantics. Types are therefore

interpreted as sets of elements and a function type [h -> B] is interpreted as the set of all

total maps from the set corresponding to h to that for B. The use of set-theoretic semantics

leads to some imt)ortant constraints on the form of recur,_;ive definitions that can be used

in PVS datatype declarations.

In Section 2, we first present the declaration for the list datatype to convey the syntac-

tic restrictions on such datatype declarations. Tile outcom_ of such datatype declarations in

terms of generated theories is explained in detail for the dat.ttype of binary trees in Section 3.

In Se.ction 4, the binary tree data structure is used to define ordered binary trees. Section 5

shows how enumerated datatypes can be defined a.s simple forms of PVS datatypes. Sec-

tion 6 shows the definition fox' (tisjoint unions. Mutually r _cursive datatypes are described

in Section 7. Subtyping on recursive datatypes is descri)ed in Section 8. In Section 9,

datatypes are used to construct effective representations for recursivc ordinals which are

then used as lexicographic termination measures for recur_ive functions. Section 10 shows

some proofs about ordered binary trees which use some of _he built-in simplifications shown

in 11 along with the proof strategies described in Section L2. Some limitations of the PVS

datatypemechanisn,aredescribedill Section13,followedby a discussionof relatedwork
in Section14.

2 Lists: A Simple Abstract Datatype

The PVS prelude contains the following declaration of the abstract datatype of lists of a

given element type.

Ill
list[t:TYPE] : DATATYPE |

IBEGIN

null: null?

cons (car: t, cdr :list) :cons?

END list

Here list is de(:lared as a tyt)e that is parametric ill the type t with two constructors

null and cons. The constructor null takes no arguments. Tim t)redicate recognizer null?

holds for exactly those elenmnts of the list datatype that are identical to null. The

constructor cons takes two arguments where tile first is of the type t and the second is a

list. Tile recognizer t)redi(:ate cons? holds for exactly those elements of the list type

that are constructed using cons, namely, those that are not identical to null. There are

two accessor._ (:orresponding to tim two arguments of cons. The accessors car and cdr

can be at)l)lied only to lists satisfying tile cons? predicate so that car(cons(x, 1)) is x

and cdr (cons (x, 1)) is 1. Note that car (null) is not a well typed expression in that it

generates a invalid proof obligation, a type correctness condition (TCC), that cons? (null)

must hold.

The rules on datatype declarations as enforced by tile PVS tyi)e(:hecker are:

1. The constructors must be pairwise distinct, i.e., there should be no duplication among

the constructors.

2. The recognizers nmst be pairwise distinct, and also distinct from any of the (:onstruc-

tors and the datatyl)e name itself.

3. There must be at least one non-recursive constructor, that is, one that has no re(:ursive

occurrences of the datatype in its accessor types. 4

4This is a needless restriction which will be removed in future versions of PVS. It was intended to ensure

that the recursive datatype had a base object. However, it turns out that the restriction does not always
guarantee the existence of such a base object such as when the base constructor has an aceessor of an
empty type. Also datatypes violating this restriction can be welt-formed such ms a datatype okay with one
recursive constructor ink_okay that has one accessor get of type list [okay]. The |)a.,_eobject in this case is
ink_okay(null). When there is no base object, then the datatype is eml)ty.

3

4. Tile recursiveoccurrencesof the datatype name in its definition nmst be positive as

described in Section 2.1.

When tile list abstract datatype is typechecked, three theories are generated in tile

file iist_adt.pvs. The frst theory, list_adt, contains the basic declarations and axioms

formalizing the datatype, including an induction scheme and an extensionality axiom for

each constructor. The second theory, :l.±st_adt_raap, defines a map operation that lifts

a flmction of type [s -> t] to a function of type [list[s] -> list[t]]. The third

theory, list_adt__reduce, formalizes a general-purpose rec_lrsion operator over the abstra(:t

datatype. These theories are examined in more detail below for the case of binary trees.

An important point to note about the generated datatype axioms is that apart from the

induction and extensionality axioms, all the other axioms are automatically applied by

PVS proof commaIlds such as assert and beta so that the relevant axioms need never be

explicitly invoked during a proof.

2.1 Positive type occurrence.

For each recursive datatype defined by means of the PVS DATATYPE declaration, the type-

(:hecker generates theories, definitions, and axioms similar _o those shown above for the case

of binary trees. In general, such a datatype can take individual and type parameters, and

is specified in terms of the constructors, and the corresponding recognizers and ac(:essors.

The type of the accessor fields can be given recursively ilt terms of the datatype itself as

long as this recursive occurrence of the type is positive in _ certain restricted sense. A type

o(:currence T is positive in a type expression Tiff either

1. T--T.

2. T occurs positively in a supertype 7_ of w.

3. T -- [rl--+T2] where T occurs positively in _-2. For example, T occurs positively in

sequence [T] where sequence [T] is defined in the F VS prelude as the flmction type

[nat -> T].

4. r = [Tl,.-., r,_] where T occurs positively in some Ti.

5. T -- [# /1: "rl l,,: _-,_ #] where T occurs positively -_n some Ti.

6. 7 ==-datatype[T1 Tn], where datatype is a previous y defined datatype and T occurs

positively in Ti, where "ri is a positive parameter of d ttatype.

Ttle recursiw',occurrencesof the datatypenamein its definitionmust be positiveso
that we(:anassignaset-theoreticinterpretationto all types.It iseasyto seethat violating
this condition in the recursion leads to contradictions. For example, a datatype T with an

accessor of type [T -> bool] wouht yield a contradiction since the cardinality of [T ->

bool] is that of the power-set of T which by Cantor's tlm()rem must be strictly greater

than tim cardinality of T. However, we have that distinct accessor elements lead to distinct

datatype elements as well, and hence a contradiction. Similarly, an accessor type of [[T

-> boolJ -> bool] is also easily ruled out by cardinality considerations even though the

occurrence of T in it is positive in terms of its polarity.

A positive type parameter T in a datatype declaration is one that only occurs positively

in the type of an accessor. Positive type parameters in datatyt)es have a special role. As

an example of a nested recursive datatype with recursion on the positive 1)arameters, a

.s'earch tree with leaf nodes bearing vahms of type T can be dec.lared as in [_. Not('. that the

recnrsive o('(:urrence of leaftree is as a (t)ositive) parameter to the l±st datatype.

leaftree[T : TYPE] : DATATYPE

BEGIN

leaf(val : T) : leaf?

node(subs : list[leaftree]): node?

END leaftree

Positive datatype 1)arameters are also used to generate the comt)inators every, some,

and map which are described in (letail for the datatyt)e of binary trees in Section 3.

3 Binary Trees

A binary t,_e is a re(:ursive data structure that in the base case is a leaf node, and in

the re(:ursive case consists of a value component, and left and right sut)trees that are

themselves t)inary trees. Binary trees (:an be formalized in several ways. In most imt)erative

programnfing language.s, they are defined as record structures containing pointers to the

subtrees. They can also be encoded in terms of more primitive recursive data stru(:tures

such as the s-expressions of Lisp. In a declarative specification language, one can formalize

binary trees by enumerating the relevant axioms. One dilficulty with this latter approach

is tim amount of effort involved in correctly identifying all of the relevant axioms. Another

difficulty is that it can be tedious to explicitly invoke these axioms during a proof. This is the

motivation for providing a concise abstract datatype mechanism in PVS that is integrated

with the theorem prover. With binary trees, the declaration of the datatype is similar to

that for lists above.

5

binary_tree[T : TYPE] : DATATYPE

BEGIN

leaf : leaf?

node(val : T, left : binary_tree, right : binary_tree) : node?

END binary_tree

The two constructors leaf and node have corresponding recognizers leaf? and node?. The

leaf constructor does not have any accessors. The node constructor has three arguments:

the value at tile node, the left, subtree, and the right subtree. The accessor functions corre-

sponding to these three arguinents are val, left, and right, respectively. When tile above

datatype declaration is typechecked, the theories binary__ree_adt, binary_tree_adt_map,

and binary_tree_adt_.reduce are generated. The first of t,hese has the form:

binary_tree_adt[T: TYPE]: THEORY

BEGIN

binary_tree: TYPE

leaf?, node?: [binary_tree -> boolean]

leaf: (leaf?)

node: [[T, binary_tree, binary_tree] -> (node?)]

val: [(node?) -> T]

left: [(node?) -> binary_tree]

right: [(node?) -> binary_tree]

{Va,_ous axiom_ and definitions omitted. }

END binary_treeadt

L__t_

Note that the theory is parainetric in the value type T. Th _ first declaration above declares

binary_tree as a type. The two recognizer predicates on [:inary trees leaf? and node? are

then declared. The constructor leaf is declared to have type (leaf?) which is the subtype

of binary_tree constrained by the leaf? predicate. The node constructor is declared as

a flmction with domain type IT, binary_tree, binary.tree] and range type (node?)

which is again the subtype of binary_tree constrained by the node? predicate. The three

accessors on value (nonleaf) nodes are then declared. Ea(h of these accessors takes as its

6

domain the subset of binary trees that are constructed by means of tile node constructor.

Note that when binary_tree_adt is instantiated with an empty actual parameter type, the

subtype (node?) must be emI)ty since there is no value component corresponding to an

dement of (node?).

The remainder of this section presents the axioms and definitions that are generated

froxn the datatype declaration for binary trees. These axioms and definitions are not meant

to bc minimal and some of them are in fact redundant.

Definition by cases. The primitive CASES construct is used for definition by cases

on the outermost constructor of a a PVS datatype expression. Tim syntax of tile CASES

construct is

CASES expression OF selections ENDCASES

where each selection (typically one selection per constructor) is of the form pattern : ex-

pression and a pattern is a constructor of arity n applied to n distinct variables. There

are no explicit axioms characterizing the behavior of CASES. In the (:a_e of the I)inary tree

datatype, when u, x, y, and z range over binary trees, a and b range over the parameter

type T, u ranges over the range tyi)e range, and v ranges over the tyi)e [T, binary_tree,

binary_tree -> range], we implicitly assume the two axioms:

CASES leaf OF leaf : u, node(a, y, z) : v(a, y, z) = u

CASES node(b, w_ x) OF leaf : u, node(a, y, z) : v(a_ y_ z) ----v(b, w, x)

Note, that in the al)ove axioms, the left-hand side occurrences of a, y, and z in v(a, y, z)

are bound.

The ord function. Tile function ord assigns a number to a datatype construction,

i.e., a datatyt)e term given solely in terms of the constructors, a(:cording to its outermost

constructor. The ord fimction is mainlY used to enumerate the elements of an enumeTnted

type (see Section 5). The oral fUllCtion is defined using CASES ill _].

ord(x: binary_tree): upto(1) =

CASES x OF leaf: O, node(nodel_var, node2_var, node3_var): I ENDCASES

Thus ord(leaf) is O, whereas ord(node(x, A, B)) is 1.

Extensionality axioms. An extensionatity axiom is :;enerated corresponding to each

constructor. The one for the leaf terms essentially assert, that leaf is tile unique term of

type (leaf?).

binary_tree_leaf_extensionality: AXIOM

(FORALL (leaf?_var: (leaf?), leaf?_var2: (leaf?)):

leaf?_var = leaf?_var2);

For the node constructor, the extensionality axi()m is:

binary_tree_node_extensionality: AXIOM

(FORALL (node?_var: (node?)),

(node?_var2: (node?)):

val(node?_var) = val(node?_var2)

AND left(node?_var) = left(node?_var2)

AND right(node?_var) = right(node?_var2)

IMPLIES node?_var = node?_var2)

17

In other words, any two value nodes that agree (m all the _ccessors are equal.

Accessor-constructor axioms. Each accesser constructor pair generates an axiom

indicating the effect of applying the accesser to an expression constructed using the con-

structor. For example, the axiom corresponding to val and node has the form:

binary_tree_val_node: AXIOM

(FORALL (nodel_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

val(node(nodel_var, node2_var, node3_var)) = 2odel_var)

We do not need an explicit axiom asserting that the recognizers leaf? and node? hold of

disjoint subsets of the type of binary trees. This proper!;y can be derived from the ord

function and the semantics of the CASES construct describ _,d above.

Eta axiom. Tile eta rule is a useful corollary to ;he extensionality axiom abow _

and tile accesser constructor axioms shown above. It is introduced as an axiom in

the binary_tree_adt theory as shown below though it does follow ms a lemma froin

extensionality. 5

'Sin future versions of PVS, it is intended that these will become lemina.s with automatically generated

proofs.

binary_tree_node_eta: AXIOM

(FORALL (node?_var: (node?)):

node(val(node?_var), left(node?_var), right(node?_var)) = node?_var)

Structural induction. The theory binary_tree_adt also contains a structural induc-

tion scheme and a few recursion schemes. The induction scheme for binary trees is stated

as"

binary_tree_induction: AXIOM

(FORALL (p: [binary_tree -> boolean]):

p(leaf)

AND

(FORALL (nodel_var: T), (node2_var: binary_tree),

(node3_var: binary_tree): p(node2_var) AND p(node3_var)

IMPLIES p(node(nodel_var, node2_var, node3_var)))

IMPLIES (FORALL (binary_tree_var: binary_tree): p(binary_tree_var)))

In other words, to prove a property of all binary trees, it is sufficient to t)rove in the t)ase

case that the property holds of tile binary tree leaf, and that in tile induction case, tile

t)rot)erty hohts of a t)inary tree node(v, A, B) assuming (the induction hyt)othesis) that

it holds of the sul)trees t and B. One simt)le consequence of the induction axiom is the

prol)erty that all I)inary trees are either leaf nodes or value nodes. This is also introduced

as an axiom in the theory binary_tree_adt.

binary_tree_inclusive: AXIOM

(FORALL (binary_tree_var: binary_tree):

leaf?(binary_tree_var) OR node?(binary_tree_var))

Definition by recursion. As another consequence of induction, we can demonstrate

the existence and uniqueness of functions defined l)y structural recursion over binary trees.

It is, however, convenient to have a more direct nmans for defining such recursive functions.

PVS therefore provides various recursion combinators 6 which can be used to define recursive

functions over datatype elements. One difficulty with defining a fully general re(:ursion com-

t)inator is that it has to })e parametric in the range type of the function I)eing defined. Since

PVS only provides such type parametricity at the level of theories, the generic recursion

coml)inators are defined in a separate theory binary_tree_adZ_reduce which provides the

(_A combinator is a laml)(la ext)ression without any free variables, but the tern, can also be applied to an

operation that can be us(_(t as a building block for other operations.

additional type parameter. The recursion combinators fo:" the common cases of functions

returning natural numbers and sub-e0 ordinals (see Section 9) are defined in the theory

binary_tree_adt itself.

The recursion combinator used for defining recursive functions over binary trees that

return natural number values, is shown below. The idea is _hat we want to define a function

f by the, following recursion over binary trees:

f(leaf) = a

/(node(v, A, B)) = g(v, f(h),/(B))

We define such an f by taking a and g as arguments to thi_ function reduce_nat. Note the

use of the ChSES construct to define a t)attern-matching case split over a datatype value

that in this case is a binary tree.

reduce_nat(leaf?_fun: nat, nodeF_fun: [IT, nat, net] -> nat]):

[binary_tree -> nat] =

LAMBDA (binary_tree_adtvar: binary_tree):

CASES binary_tree_adtvar OF

leaf: leafF_fun,

node(nodel_var, node2_var, node3_var):

node?_fun(nodel_var,

reduce_nat(leaf?_fun,

node?_fun)

(node2_var),

reduce_nat(leaf?_fun,

nodeF_fun)

(node3_var))

ENDCASES;

LU_

The reduce_uat recursion combinator is useful for defining a "size" flm('tion as shown

in [_] but has the weakness that node?_.fun only has access to the val field of the node.

The theory binary_tree_adt also contains a variant REDUCEmat where the leaf?_fun is

a function and the node?__fun function takes an additional argument. The definition is

omitted here since a more generic version of this recursiol: combinator is described below.

A generic version of the structural recursion combina:;or on binary trees is defined in

binary_tree_adt_reduce where the type nat in the definition of reducemat has been

generalized to an arbitrary parameter type range.

10

binary_tree_adt_reduce[T: TYPE, range: TYPE]: THEORY

BEGIN

IMPORTING binary_tree_adt[T]

reduce(leafY_fun: range, node?_fun: lIT, range, range] -> range]):

[binary_tree[T] -> range] =

LAMBDA (binary_tree_var: binary_tree[T]):

CASES binary_tree_vat OF

leaf: leafY_fun,

node(nodel_var, node2_var, node3_var):

node?_fun(nodei_var,

reduce(leafY_fun,

node?_fun)(node2_var),

reduce(leaf?_fun,

node?_fun)(node3_var))

ENDCASES

[]

END binary_tree_adt_reduce

Ttm theory binary_tree_adt_reduce also contains the more flexible recursion combi-

nator REDUCE where the leaf?_fun and node?_fun functions take binary_tree_var as an

argum(u_t.

REDUCE(leafY_fun: [binary_tree[T] -> range], node?_fun:

[[T, range, range, binary_tree[T]] -> range]):

[binary_tree[T] -> range] =

LAMBDA (binary_tree_var: binary_tree[T]):

CASES binary_tree_var OF

leaf: leaf?_fun(binary_tree_var),

node(nodel_var, node2_var, node3_var):

node?_fun(nodel_var,

REDUCE(leafY_fun,

node?_fun)(node2_var),

REDUCE(leafY_fun,

node?_fun)(node3_var),

binary_tree_var)

ENDCASES

PVS 2 introduced certain extensions to the datatype mechanism that were absent in

11

PVS 1. These include a primitive subterm relation, the seine, every, and map combinators,

and recursion through parameters of previously defined d:ttatypes.

Subterm relation. Tile primitive sul)term relation is defined oil datatype objects and

checks whether one object occurs as a (not necessarily proper) subterm of another object.
This relation is defined as subterm.

subterm(x: binary_tree, y: binary_tree): boolean =

x=y

OR CASES y OF

leaf: FALSE,

node(nodel_var, node2_var, node3_var):

subterm(x, node2_var) OR subterm(x, l_ode3_var)

ENDCASES

The l)rot)er sul)term relation is (tcfined by <<. The prop(T subterm relation is useflH as a

w(dl-foun(ted terinination relation that can be given ah)ng ,¢ith the measure for a recursively
defined fimction.

<<(x: binary_tree, y: binary_tree): boolean =

CASES y OF

leaf: FALSE,

node(nodel_var, node2_var, node3_var):

(x = node2_var OR x << node2_var)

OR x = node3_var OR x << node3_var
ENDCASES

Well-foundedness. The next axiom asserts that datatype objects are well-founded with

rest)e(:t to the proper subterm relation. The induction axiom binary_tree_induction can

t)e derive(l as a ('onsequence of the axiom binary_tree_we::.l_founded and the well-founded

induction lemma wf_induction in the t)relud(_'.

binary_tree_well_founded: AXIOM well_founded?[bin_ry_tree](<<);

12

The every combinator. Tile PVS type(:hecker generates the combinators every and

some corresponding to the positive parameters of a datatype. For example, every checks

if all values of this parameter type in an instance of the datatypc satisfy a given predicate

oil the parameter type. Furthermore, if all the type parameters of a datatype are positiw',

then a map combinator is also generated.

The every combinator in the theory binary_tree_adt takes a predicate p on the positive

type parameter T, and checks that every occurrence of an object of the type parameter in a

t)inary tree satisfiies tile predicate. The binary_tree_ad*z theory also contains a non-curried

variant of every that is written as every(p, a) instead of every(p) (a).

every(p: PRED[T])(a: binary_tree): boolean =

CASES a OF

leaf: TRUE,

node(nodel_var, node2_var, node3_var):

p(nodel_var)

AND every(p)(node2_var) AND every(p)(node3_var)

ENDCASES

The some combinator. Tile some combinator is the dual to every and checks that

some occurrence of a value of type T in the binary tree satisfies the given predicate. 7

some(p: PRED[T])(a: binary_tree): boolean =
CASES a OF

leaf: FALSE,

node(nodel_var, node2_var, node3_var):

p(nodel_var) OR some(p)(node2_var) DR some(p)(node3_var)

ENDCASES

Lg_

The map combinator. Finally, when all the type parameters of a datatype def-

inition occur positively in the definition, as is the case with binary_tree, a theory

binary_tree_adt_map is generated that defines the curried and non-curried versions of the

map combinator. In addition to the parameter T, binary_tree_adt_map takes a range type

parameter T1. The map combinator api)lies a flmction f from T to T1 to every value of type

T in a given binary_tree [T] to return a result of type binary_tree [TI]. We, omit the

definition of the non-curried variant of map.

7For operations like some and every, PVS alh)ws a notational convenience where (some! X: p(x)) is

shorthand for some(lambda x: p(x)).

13

binary_tree_adt_map[T:TYPE,TI: TYPE]: THEORY
BEGIN

IMPORTING binary_tree_adt

map(f: [T -> Tl])(a: binary_tree[T]): binary_tree[Tl] =

CASES a OF

leaf: leaf[T1],

node(nodel_var, node2_var, node3_var):

node[T1](f(node1_var),

map(f)(node2_var), map(f)(node3_var))

ENDCASES

END binary_tree_adt_map

In sununary, the datatyl)e mechanism accepts parametric recursive type definitions in

terms of constructors, accessors, and recognizers. The recursive occurrem:es of the datatype

must he positive. The typechecker generates recognizer subtypes, aceessor-construetor ax-

ioms. extensionality axioms, a structural induction schel m, a subterm ordering relation,

and various re(:ursion combinators. With respect to positively occurring type parameters,

the tyt)eche(:ker generates the some and every eombinatoIs. When all type parameters are

positive, the tyt)echecker also generates a map combinator. We next examine the use of the

above theories formalizing binary trees in the definition ot ordered binary trees.

4 Ordered Binary Trees

In ordere(t binary trees, tile vahms in tim nodes are ordered relative to each otimr: the value

at a node is no less than any of the values in the left subtre_, and no greater than ally of the

values ill tim right subtree. Such a data structure has marly obvious uses since tile vahms

are maintained in sorted form and the average time for L,oking up a value or inserting a

new value is logarithmic in the number of nodes.

The PVS sl)ecification of ordered binary trees is give, in the theory obt below. It is

worth noting the use of theory parameters in this specificat ion. The body of the theory obt

has been elided from the specification displayed below.

14

obt IT : TYPE, <= : (total_order?[T])] : THEORY

BEGIN

IMPORTING binary_tree[T]

A, B, C: VAR binary_tree

x, y, z: VAR T

pp: VAR pred[T]

i, j, k: VAR nat

END obt

The theory obt takes the type T of the values kept in the binary tree as its first parameter.

Its second parameter is the total ordering used to order tile binary tree. This paranmter,

represented as <=, has tile type (total_order? [T]) consisting of those binary relations on

T that are total orderings, that is, those that are reflexive, transitive, antisymmetric, and

linear. Note that the type of tim second parameter to this theory depends oi, the first

i)arameter T.

We can now use the every combinator to define when a binary tree is ordered relative

to the theory parameter <=. This notion is captured by the predicate ordered? oll t)inary

trees. Sin(:e ordered? will be defined t)y a dire('t recursion, its definition will need a measure

that demonstrates the ternfination of the recursion. In the definition of size below, the

reeursion combinator reduce_nat is used to count the munber of value nodes in a given

t)inary tree. This flmction is defined to return 0 when given a leaf, and to increment the

sum of the sizes of the left, and right subtrees t)y 1 when given a node.

L3L3
size(A) : nat =

reduce_nat(0, (LAMBDA x, i, j: i + j + I))(A)

The recursive definition of ordered? show** below returns TRUE in the base case since

a leaf node is clearly an ordered tree by itself. In the recursive case, the defiifition ensures

that the left and right subtrees of the given tree h are themselves ordered. It also uses

every to check that all the values in the left subtree are no greater than the value val (h)

at A, and the values in the right subtree are no less than the value at h. The measure size

is used to demonstrate the ternfination of the recursion displayed t)y ordered?. The proper

subterm relation shown in [-_ could also be used as a well-founded relation in establishing

the ternfination of ordered? by writing MEASURE h BY << (see @) in place of MEASURE
size.

15

ordered?(A) : RECURSIVE bool =

(IF node?(A) THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND

ordered?(left(A)) AND

ordered?(right(A)))

ELSE TRUE ENDIF)

MEASURE size

When the above definition is typechecked, two proof obligations (TCCs) are generated

corresponding to the termination requirements for the two recursive calls. The first one

requires that the size of the left subtree of a binary tree h must be smaller than the size

of t. Tile second proof obligation requires that the sizc of the right subtree of t must

be smaller than the size of t. Note how the governing IF-THEN-ELSE condition and the

preceding conjuncts are included as antecedents in the proof obligations below.

ordered?_TCC1: 0BLIGATION

(FORALL (A):

node?(A)

AND every((LAMBDA y: y <= val(A)), lefl(A))

AND every((LAMBDA y: val(A) <= y), right(A))

IMPLIES size(left(A)) < size(A));

ordered?_TCC2: OBLIGATION

(FORALL (v: [binary_tree[T] -> bool], A):

node?(A)

AND every((LAMBDA y: y <= val(A)), left(A))

AND every((LhMBDh y: val(A) <= y), right(A)) AND v(left(h))

IMPLIES size(right(A)) < size(A));

124

The PVS Emacs command M-x tc typechecks a file in PV_ ¢ . The PVS Emacs command M-x

tcp can be used to both typecheck the file and attempt t(prove the resulting TCCs using

the existing proof (if there is one) or a built-in strategy ao'ording to the source of the TCC

(subtype, termination, existence, assuming, etc.). As it turns out, the termination-tee

strategy automatically proves both ordered?_TCC1 and ordered?_TCC2.

Tim next definition in the obt theory is that of th_ insert operation. The term

insert(x, A) returns that binary tree obtained by inserting the value x at the appro-

priate position in the binary tree h. The insert operatiol is also defined by recursion but

emph)ys the CASES construct instead of the IF-THEN-EL_CE conditionah In the base ca.se,

when the argument h nmtches the term leaf, the binary tree containing the single value x

is returned a_s the result. In the recursion case, the argument h ha.s the form node(y, B,

16

C), andif x isat mosty accordingto tlle giventotal orderingon tile typeT, thenwerecon-
struct the nodewith valuey, left subtreeinsert (x, B), andright subtreeC. Otherwise,
wereconstructthenodewith valuey, left subtreeB,andright subtreeinsert (x, C).

insert(x, A): RECURSIVE binary_tree[T] =

(CASES A OF

leaf: node(x, leaf, leaf),

node(y, B, C): (IF x<=y THEN node(y, insert(x, B), C)

ELSE node(y, B, insert(x, C))

ENDIF)

ENDCASES)

MEASURE size(A)

When the al)ove definition is typeehecked, two termination proof obligations are

generate(t (:orrespon(ling to the two re(:ursive iilvo(:ations of insert. Both proof obli-

gations insert_TCCl and insert_Tee2 are automatically discharged by the default

termination-tee strategy.

insert_TCCl: OBLIGATION

(FORALL (B: binary_tree[T], C: binary_tree[T], y: T, A, x):

h = node(y, B, C) AND x <= y IMPLIES size(B) < size(A));

insert_TCC2: OBLIGATION

(FORALL (B: binary_tree[T], C: binary_tree[T], y: T, A, x):

A = node(y, B, C) AND NOT x <= y IMPLIES size(C) < size(A))

The folh)wing lelmna states an interesting property of insert. Its proof requires the

use of indu(:tion over binary trees. It asserts that if every value in the tree A has property

pp, and the value x also has property pp, then every value in the result of inserting x into

A has property pp.

ordered?_insert_step: LEMMA

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))

The theorein ordered?_insert asserts the imt)ortant property (if insert that it returns

an or(tered binary tree when given an ordered binary tree.

ordered?_insert: THEOREM

ordered?(h) IMPLIES ordered?(insert(x, A))

We examine some proofs of this theorem in Se(:tion 10.

17

5 In-line and Enumeration Types

Tile example of binary tree.s illustrated how abstract datatypes can be declared as theories

(that are automatically expanded) within PVS. Abstract datatypes can be declared within

other theories as long as they do not employ any parameters. Note that PVS has type

parameterization only at the theory level and not at th(declaration level. For example,

the type of combinators constructed out of the K and S combinators is captured by the

following declaxation that can occur at the declaration level within a theory. The axioms

generated l)y tile DATATYPE declaration call be viewed using the PVS Emacs coinmand M-x

ppe.

combinators : THEORY

BEGIN

combinators: DATATYPE

BEGIN

K: K?

S: S?

app(operator, operand: combinators): app?
END combinators

x, y, z: VAR combinators

reduces_to: PRED[[combinators, combinators]]

K: AXIOM reduces_to(app(app(K, x), y), x)

S: AXIOM reduces_to(app(app(app(S, x), y), z), app(app(x, z), app(y, z)))

END combinators

The most frequently used such in-line abstract datatypes are enumeration types. For

example, the type of colors consisting of red, white, an(i blue can given by the following

in-line (latatyi)(_ declaration.

colors: DATATYPE

BEGIN

red: red?

white: white?

blue: blue?

END colors

18

The above declaration is a rather verbose way of defining the type of colors. PVS pro-

vides an abbreviation nlechanism that allows the above declaration to be expressed more

succinctly a.s shown bek)w.

colors: TYPE = {red, white, blue}

All of the axiomatized properties of such enumeration types are built into tile PVS proof

checker as shown in tile previous section so that no axioms about emnneration types need

ever be explicitly used.

6 Disjoint Unions

The type constructor for the disjoint union of two types is popular enough to be included in

several languages. The disjoint union of two sets A and B is a set in which each (dement is

tagged according to whether it is froln A or from B. It is easy to see that the type analogue

of the disjoint uniotl ot)eration (:an be defined using the DATATYPE inechanism of PVS as
shown below:

disj_union[A, B: TYPE] : DATATYPE
BEGIN

inl(left : A): inl?

inr(right : B): inr?

END disj_union

The type disj_union [nat, bool] then inchldes values such a,s inl (1) an<t inr (TRUE).

Rushby [Rus95] presents a toy compiler verification exercise [WW93] in PVS and

presents an extensive discussion of the use of disjoint unions in PVS specifications and

proofs.

7 Mutually Recursive Datatypes

Mutually recursive datatypes arise quite frequently in programining and specification. A

connnon example is that of a language definition whexe tyt)e expressions contain terms and

vice-versa. Mutually recursive type definitions are not directly admissible using the PVS

(tatatyt)e mechanism. But most typical mutual rccursive types can, in fact, be. define(t as a

single datatyt)e in PVS with subtyI)es that grouI) together cla,sses of constructors. PVS 2 has

been extended to admit such datatyt)es with sub-datatypes. The example below descril)es

19

theclassof arithmeticexpressionsthat includenumbers,sums,andconditionalexpressions
classifiedby the sub-datatypeterm, wherethe test compq)nentof a conditionalexpression
is a booleanexpressionclassifiedby the subdatatypeexp,'. Thussub-datatypesarea way
of collectingtogethergroupsof constructorsof adatatypethat form onepart of a mutually
recursivedatatypedefinition. In the examplebelow,booleanexpressionsaredefineda._
equalitiesbetweenarithmeticexpressions,and condition_larithmetic expressionscontain
booleansubexpressions,sothat arithmeticandbooleanexpressionsaremutually recursive.

arith: DATATYPE WITH SUBTYPES expr, term

BEGIN

num(n:int): num? :term

sum(tl:term,t2:term): sum? :term

eq(tl: term, t2: term): eq? :expr

ift(e: expr, tl: term, t2: term): ift? :term

END arith

The only restriction oil the use of subdatatypes other than those listed in Section 2 is

that the sub-datatypes shouht l)e pairwise distinct and differ from the datatype itself. In

particular, sub-datatypes need not actually be used in which case they are empty. It is

t)ossit)h_ to define mutual recursive types that lead to empty (:onstructor subtyI)es such as if

the eq constructor in the arith datatype was specified as eq(tl : expr, t2: expr) : eq?

: expr.

An evaluator for such arithmeti('/boolean expression._ can be defined as eva1 whose

range type is a disjoint union of boo1 and int (according to whether the input expression

is of tyl)e expr or term. The function eva1 is therefore dei)endently typed to return values

of type (bool?) on inputs of type expr and values of typ((int?) on inputs of type 1;erm.

2O

arith_eval: THEORY

BEGIN

IMPORTING arith

value: DATATYPE

BEGIN

bool(b:bool): bool?

int(i:int): int?

END value

eval(a: arith): RECUKSIVE

{v: value i IF expr(a) THEN bool?(v) ELSE int?(v) ENDIF} :

CASES a OF

num(n): int(n),

sum(nl, n2): int(i(eval(nl)) + i(eval(n2))),

eq(nl, n2): bool(i(eval(nl)) = i(eval(n2))),

ift(e, nl, n2): IF b(eval(e)) THEN eval(nl) ELSE eval(n2) ENDIF

ENDCASES

MEASURE a BY <<

END arith_eval

L!t

8 Lifting Subtyping on Recursive Datatype Parameters

Tile (tatatype mechanisnl in PVS 2.0 had tile limitation that though tile tyt)e of nat of

natural numl)ers is a subtype of tile type int of integers, the tyt)e list [nat] of lists over

the natural munl)ers is not a subtype of the, type list [int] of lists over the integers. Tile

datatype me('hanism in PVS 2.1 ha.s 1)een modifie(t to lift such subtyping over positive

parameters to the corresponding abstract datatypes. In general, given a datatype D with a

positive type parameter, we have

D[{x: T I p(x)}] -- {d: D[T] I every(p)(d)}.

While cons[nat] is neither syntactically nor semantically identical to cons[int],

constru(;tor applications involving cons[int] and cons[nat] such as cons[nat] (0,

null [nat]) and cons [int] (0, null [int]) are syntactically identical. Also, constructors

that are declared to have no aceessors (e.g., null) are synta(',tically equal, so null lint] =

null [real], but null [int] and null [bool] belong to incompatit)le types.

In general, when a constructor, accessor, or recognizer occurs as an operator of an

application, the actual 1)arametcr is only use(t for testing compatit)ility. Note that the

21

actual parameter is not actually ignored. For example, the expression cons[nat] (-1,

null) is not type correct and generates tile unprovable proof obligation -1 > 0.

When nmltiple parameters are involved, only the positive ones satisfy tile subtyping

equivalences given above. Thus in the datatype declaration

dt[tl, t2: TYPE, c: tl]: DATATYPE

BEGIN

b: b?

c(al:[tl -> t2], a2: dr): c?

END dt

only t2 occurs positively, so dt [int, nat, 3] is a subtype of dt [int, int, 3], but bears

no relation to dt [nat, nat, 3] or to dt [int, nat, 2].

9 Representations of Recursive Ordinals

Ordinals are needed to provide lexicographic termination ineasures for recursive fimctions.

The Ackermaml flmction provides a well known example of a doubly recursive function

that requires a lexicographic measure. P4ter's version [P6t67] of the Ackerinann flmction is

defined in the theory ackermann as ack.

ackermann: THEORY

BEGIN

i, j, k, m, n: VAR nat

ack(m,n): KECURSIVE nat =

(IF m=0 THEN n+l

ELSIF n=0 THEN ack(m-l,l)

ELSE ack(m-l, ack(m, n-l))

ENDIF)

MEASURE lex2(m, n)

END ackermann

Tim lexicographic termination measure for ack is computed by the function lex2 (see [-_)

which returns a representation for the ordinal in the lexi,:ographic ordering. The ordinal

e0 is the least ordinal x such that x -- _, and therefore i lcludes 0, 1,... ,w, cv + 1,...c0 +

22

w,..., 3 * w,. . . , w2,. . . , w_',. .. , w "_ , The sub-e0 ordinals can be represented using tile

Cantor normal form which asserts that to any non-zero ordinal a, there are n ordinals

at ,an with_l _< ... _< _n < a, such that a =_°_ +wo2+...+w_,_. We can make

this representation slightly more compact by adding natural number coefficients so that to

any c_, there are ordinals aa ,a,_ such that cq < ... < _,_ < c_, and natural numbers

cl, • • •, cn such that _ = cl *w (_' +c2*w _2 +. • .+cn*w _" • It is easy to see that a lexicographic

measure can be given by n * _0 + m * w which is just n + m * w.

We now explain how the sub-e0 ordinals are defined in the PVS prelude. We start by

defining an ordstruct datatype that represents ordinal-like structures.

ordstruct: DATATYPE

BEGIN

zero: zero?

add(coef: posnat, exp: ordstruct, rest: ordstruct): nonzero?

END ordstruct

In intuitive terms, the ordinal represented by zero is O, and the ordinal represente<l

by add(c, alpha, beta) given by, say ordinal(add(c, alpha, beta)) is c ,w °rdinal(alpha) +

o_ffinal(beta). Wc can theu define an ordering relation on ordstruct terms a.s giwu, by

< in [_. It compares add(±, u, v) against add(j, z, w) by either recursively eusuriug

u < z, or checking that u is syntactically identical to z and either i < j or ± = j and

recursively v < w.

ordinals: THEORY

BEGIN

i, j, k: VAR posnat

m, n, o: VAR nat

u, v, w, x, y, z: VAR ordstruct

size: [ordstruct->nat] = reduce[nat](O, (LAMBDA i, m, n: I + m+n));

<(x, y): RECURSIVE bool =

CASES x OF

zero: NOT zero?(y),

add(i, u, v): CASES y OF

zero: FALSE,

add(j, z, w):

ENDCASES

MEASURE size(x);

ENDCASES

(u<z) OR

(u=z) AND (i<j) OR

(u=z) AND (i=j) AND (v<w)

23

This is not quite the ordering relation we want since it wil_ obviously only work for normal-

ized (and therefore, canonical) representations where the exponent ordinals appear in sorted

(decreasing) order. Ill particular, note that tile use of syntactic identity on ordstruct terms

will not work unless the terms are in fact canonical representatives. It is easy to define a

predicate which identifies all ordstruct term as being ill _.he required Cantor normal form

by defining a recursive predicate ordinal? as shown ill [].

>(x, y): bool = y < x;

<=(x, y): bool = x < y 0R x = y;

>=(x, y): bool = y < x OR y = x

ordinal?(x): RECURSIVE bool =

CASES x 0F

zero: TRUE,

add(i, u, v):

ENDCASES

MEASURE size

(ordinal?(u) AND ordinal?(v) AND

CASES v OF

zero: TRUE,

add(k, r, s): r < u

ENDCASES)

ordinal: NONEMPTY_TYPE = (ordinal?)

Tile definition of ordinal? checks add(i, u, v) to recursively ensure that u and v are

ordinals, and that in add(i, u, add(k, r, s)), we haxe r < u. This latter use of the

ordering relation is accet)tat)le sin(:e we have already checke :l that r and u are proper normal

fi)rms. The definition of lex2 is given in [_]. Note that adi(n, zero, zero) ret)resents n,

add(m, add(l, zero, zero), zero)represents re.o a, and add(m, add(1,zero,zero),

add(n,zero, zero)) represents n + m * co. s

_The PVS CONVERSION mechanism can t)e used to gracefully embec the natural numbers into the ordinal

type by converting 0 to zero, and a positive numl)er n to add(n, ze:-o, zero).

24

lex2(m, n): ordinal =

(IF m=O

THEN IF n = 0

THEN zero

ELSE add(n, zero, zero)

ENDIF

ELSIF n = 0 THEN add(m, add(l,zero,zero),zero)

ELSE add(m, add(l,zero,zero), add(n,zero, zero))

ENDIF)

lex2_it: LEMMA

lex2(i, j) < lex2(m, n) =

(i < m OR (i = m AND j < n))

Returning to the example of the Ackermann flmction in [_, the measure lex2(m, n)

generates three ternfination TCCs corresponding to the three recm'sive invocations of the
function.

ack_TCC2: OBLIGATION

(FORALL (m, n): NOT m = 0 AND n = 0

IMPLIES lex2(m - i, I) < lex2(m, n));

ack_TCC5: OBLIGATION

(FORALL (m, n):

NOT m = 0 AND NOT n = 0

IMPLIES lex2(m, n - i) < lex2(m, n));

ack_TCC6: OBLIGATION

(FORALL (v: [[nat, naturalnumber] -> nat], m, n):

NOT m = 0 AND NOT n = 0

IMPLIES lex2(m - i, v(m, n - i)) < lex2(m, n));

All three TCCs are proved automatically by tile default termination-tcc strategy.

10 Some Illustrative Proofs about Ordered Binary Trees

We present two proofs of ordered?_insert shown in [_-]. The second proof exhibits a

greater level of automation than the first proof. The first proof illustrates the various low-

level datatype related proof commands that are provided by PVS, and the second proof

illustrates how these commands can be combined to form more I)owerful and automatic

proof strategies. Strategies are similar to the tactics of tile LCF [GMW79] family of proof
checkers.

25

10.1 A Low-level Proof

When we invoke M-x pr on ordered?_insert, the theorelZl to be proved is displayed in

the *pvs* l)uffer, and we are prompted for all inference rule by the Rule? prompt. Since

the proof is by induction, ttle first step in the proof is the command (induct "A"). This

indicates that we wish to invoke the induct strategy with A as the induction variable. The

induction strategy finds tile induction axiom corresponding to the datatype of,_, instantiates

it suitably, and simplifies it to generate the base and induct ion cases. We are then presented

the 1)ase case of tile proof. (The induction case Call be displayed with tile PVS Emacs

command M-x siblings.

ordered?_insert :

I

{I} (FORALL (A: binary_tree[T], x: T):

ordered?(A) IMPLIES ordered?(insert(x, A)))

Rule? I(induct "A") I

Inducting on A,

this yields 2 subgoals:

ordered?_insert.l :

I

{I} (FORALL (x: T): ordered?(leaf) IMPLIES ordered?(insert(x, leaf)))

In the next step, we replace the mfiversally quantified variable with a Skolem constant and

flatten the sequent by simplifying all top-level propositional connectives that are disjunctive

(i.e.. negations, positive iml)lications and disjunctions, am l negative conjunctions).

Rule? [(skosimp) !lattening,
Skolemlzing and

this simplifies to:

ordered?_insert.l :

{-1} ordered?(leaf)

I

{I} ordered?(insert(x!l, leaf))

[_it

The obvious step now is to open up the definitions of insert and ordered?. This is done

by two invocations of the expand rule.

26

Rule? (expand "insert")

Expanding the definition of insert,

this simplifies to:

ordered?_insert.l :

[-I] ordered?(leaf)

I

{i} ordered?(node(x!l, leaf, leaf))

Rule? (expand "ordered?")]

Expanding the definition of ordered?,

this simplifies to:

ordered?_insert.l :

I

{i} (every((LAMBDA (y: T): y <= x!l), leaf)

AND every((LAMBDA (y: T): x!l <= y), leaf)

AND ordered?(leaf) AND ordered?(leaf))

The problem now is that all the occurrences of ordered.'? are expanded so that tile an-

te('edent formula ordered? (leaf) reduces to TRUE and vanishes from the sequent. This

forumla in its unexpanded form is actually useful since it occurs ill tile consequent part

of tile sequent. We could press on and expand ordered? once again or, alternatively, we

could undo this step of the proof and expand ordered? more selectively using the command

(expand "ordered?" +).

27

RuleT_un-d-o)_

This will undo the proof to:

ordered?_insert.l :

[-I] ordered?(leaf)

I

{i} ordered?(node(x!i, leaf, leaf))

Sure? (Y or N): y

ordered?_insert.l :

[-I] ordered?(leaf)

I

{1} ordered?(node(x!l, leaf, leaf))

Rule? (expand "ordered?" +)

Expanding the definition of ordered?,

this simplifies to:

ordered?_insert.1 :

[-i] ordered?(leaf)

.......

{I} (every((LAMBDA (y: T): y <= x!l), leaf)

AND every((LAMBDA (y: T): x!1 <= y), leaf)

AND ordered?(leaf) AND ordered?(leaf))

Now an invocation of assert eliminates the occurrences of the subformula ordered? (leaf)

ill the consequent since it appears in the antecedent. Expt_.nding every then completes the

ba.se ca.se of the proof without any further work.

Rule? [(assert) I

Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

ordered?_insert.1 :

[-I] ordered?(leaf)

I

{I} (every((LAMBDA (y: T): y <= x!l), leaf)

AND every((LAMBDA (y: T): x!l <= y), leaf))

Rule? (expand "every")]

Expanding the definition of every,

this simplifies to:

ordered?_insert.l :

[-I] orderedF(leaf)

I

{i} TRUE
which is trivially true.

This completes the proof of ordered?_insert.l.

28

Having completed the base case of the proof, we are leh with the induction case. Our

first step here is to apply the rule skosimp*. This is a strategy that repeatedly performs

a skolem! followed by a flatten until nothing changes, i.e., it is an iterated form of the

skosimp command.

ordered?_insert.2 :

I

{I) (FORALL (nodel_var: T, node2_var: binary_tree[T],

node3_var: binary_tree[T3):

(FORALL (x: T):

ordered?(node2_var) IMPLIES ordered?(insert(x, node2_var)))

AND

(FORALL (x: T):

ordered?(node3_var) IMPLIES ordered?(insert(x, node3_var)))

IMPLIES

(FORALL (x: T):

ordered?(node(nodel_var, node2_var, node3_var))

IMPLIES

ordered?(insert(x, node(nodel_var, node2_var, node3_var)))))

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

ordered?_insert.2 :

{-i} (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

{-2} (FORALL (x: T):

ordered?(node3var!l) IMPLIES ordered?(insert(x, node3_var!l)))

{-3} ordered?(node(nodel var!l, node2_var!l, node3_var!l))

I

{1} ordered?(insert(x!l, node(nodel var!l, node2 var!l, node3 var!l)))

Now we have a subgoal sequent in which the induction hypotheses are the formulas mlmber

-1 and -2, and the induction conclusion formulas are numbered -3 and 1. We clearly need

to expand the definitions of insert and ordered? in the induction conclusion. We first

expand insert and then propositionally simplify the resulting IF-THEN-ELSE expression as

shown below.

29

Rule? (expand "insert" +)

Expanding the definition of insert,

this simplifies to:

ordered?_insert.2 :

[-I] (FOKALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-2] (FORALL (x: T):

ordered?(node3_var!l) IMPLIES ordered?(insert(x, node3_var!l)))

[-3] ordered?(node(nodel_var!l, node2_var!l, node3_var!l))

I

{I} IF x!l <= nodel_var!l

THEN ordered?(node(nodel_var!l, insert(x!l, node2_var!l), node3_var!l))

ELSE ordered?(node(nodel_var!l, node2 var!l, insert(x!l, node3_var!l)))

ENDIF

Rule?

Applying propositional simplification,

this yields 2 subgoals:

ordered?_insert.2.1 :

{-II x!l <= nodel_var!l

[-2] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-3] (FORALL (x: T):

ordered?(node3_var!l) IMPLIES ordered?(insert(x, node3_var!l)))

[-4] ordered?(node(nodel_var!l, node2_var!l, node3var!l))

l

{i} ordered?(node(nodel_var!l, insert(x!1, node2_var!l), node3_var!1))

The t)rol)ositional simplification step generates two subgoals accordiug to whether tile recur-

sivc invocation of insert is on the left or the right subtre(_. We first consider the insertion

into the left subtree given |)y subgoal ordered?_insert.2.1. We can instantiate the in-

(tu('tion hypothesis numbered -2 by ai)plying the inst? command which uses syntactic

matching to find instantiating terms for the universally quantified variable in -2.

30

Rule7 (inst?)

Found substitution:

x gets x!l,

Instantiating quantified variables,

this simplifies to:

ordered?_insert.2.1 :

[-1] x!l <= node1_var!l

{-2} ordered?(node2_var!l) IMPLIES orderedT(insert(x!l, node2_var!l))

[-3] (FORALL (x: T):

ordered?(node3_var!l) IMPLIES orderedT(insert(x, node3_var!l)))

[-4] orderedT(node(nodel_var!1, node2_var!l, node3_var!l))

I

[I] orderedT(node(nodel_var!l, insert(x!l, node2_var!l), node3_var!1))

The next step is to expand the definition of ordered.'? in tile induction conclusion. Note

that the second arguinent to the expand proof command is a list of the forinula numbers

where the expansion is to be, performed. It makes the proof considerably less robust if it

explicitly lnentions such formula numbers, though this can be unawfidable in some cases. ``)

Rule? (expand "ordered?" (-4 i))

Expanding the definition of ordered?,

this simplifies to:

ordered?_insert.2.1 :

[-1] x!l <= nodel_var!l

[-2] ordered?(node2_var!l) IMPLIES ordered?(insert(x!l, node2_var!l))

[-3] (FORALL (x: T):

ordered?(node3_var!l) IMPLIES ordered?(insert(x, node3_var!l)))

{-4} (every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

AND every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

AND ordered?(node2_var!l) AND ordered?(node3_var!l))

I

{I} (every((LAMBDA (y: T): y <= nodel_var!l), insert(x!l, node2_var!l))

AND every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

AND ordered?(insert(x!l, node2_var!l)) AND ordered?(node3_var!l))

Applying propositional simplification prop to the resulting subgoal generates two fllr-

ther subgoals. The frst of these is easily proved by rewriting using the lemma

ordered?_insert_step. Note that this is a conditional rewrite rule and has the form

A D B, where the rewriting given by B can be applied to a matching instan<'e or(B) only

_*PVS is currently being enhanced to allow labels to be introduced for sequent formulas so that formula

selection in the PVS proof commands can be done with labels as an alternative to formula numbers.

31

when the corresponding a(A) (the condition) is provable. The rewrite proof strategy at-

tempts to discharge these conditions automatically, and _ny undischarged conditions are

generated a_s subgoals.

Rule?

Applying propositional simplification,

this simplifies to:

orderedF_insert.2.1 :

{-I} ordered?(insert(x!l, node2_var!l))

[-2] x!l <= nodel_var!l

[-3] (FORALL (x: T): !

ordered?(node3_var!l) IMPLIES ordered?(insert(x, node3_var!l)))

{-4} every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

{-5} every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

{-6} ordered?(node2 var!l)

t-7} ordered?(node3_var!l)

I

{1} every((LAMBDA (y: T): y <= nodel_var!l), insert(x!l, node2 var!l))

Rule? (rewrite "ordered?_insert_step")

Found matching substitution:

A gets node2 vat!l,

x gets x!l,

pp gets (LAMBDA (y: T): y <= nodel var!l),

Rewriting using ordered?_insertstep,

This completes the proof of ordered?_insert.2.1.

[50

We haw; now completed the part of the proof corresI:onding to the insertion into the

left. subtree. Next, we proceed to the case when the inserl operation is applied to the right

subtree. This case is similar to the proof of ordered?__nsert. 2.1.

ordered?_insert.2.2 :

[-i] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(ins_rt(x, node2_var!l)))

[-2] (FDRALL (x: T):

ordered?(node3_var!l) IMPLIES ordered?(insert(x, node3_var!l)))

[-3] ordered?(node(nodel_var!l, node2_var!l, node__var!l))

I

{I} x!l <= nodel_var!l

{2} ordered?(node(nodel_var!l, node2_var!l, insert(x!l, node3_var!l)))

Uz_

As in [_ earlier, we apply the step inst?.

32

Rule? [(inst?) I

Found substitution:

x gets x!l,

Instantiating quantified variables,

this simplifies to:

orderedT_insert.2.2 :

{-I} ordered?(node2_var!l) IMPLIES orderedF(insert(x!l, node2_var!l))

[-2] (FORALL (x: T):

orderedF(node3_var!l) IMPLIES ordered?(insert(x, node3_var!l)))

[-3] ordered?(node(nodel_var!l, node2_var!l, node3_var!l))

I

[i] x!l <= nodel_var!l

[2] ordered?(node(nodel_var!l, node2_var!l, insert(x!l, node3_var!l)))

It however instantiates the formula -1 which is not the appropriate induction hyl)othesis

for the right branch. To apply the inst? step with greater selectivity, we undo the last step

and supply a further argument to inst? indicating the number of the quantified formula
to be instantiated.

Rule? [(inst? -2)]

Found substitution:

x gets x!l,

Instantiating quantified variables,

this simplifies to:

ordered?_insert.2.2 :

[-i] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

{-2} ordered?(node3_var!l) IMPLIES ordered?(insert(x!l, node3_var!l))

[-3] ordered?(node(nodel_var!l, node2_var!l, node3_var!l))

I

[i] X!l <= nodel_var!l

[2] ordered?(node(nodel_var!l, node2_var!l, insert(x!l, node3_var!l)))

153

Now, as before, we expand the definition of ordered.'? in the induction conclusion formulas
-3 and 2.

33

Rule? [(expand "ordered?" (-3 2))]

Expanding the definition of ordered?,

this simplifies to:

ordered?_insert.2.2 :

[-I] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-2] ordered?(node3_var!l) IMPLIES ordered?(inser1(x!l, node3_var!l))

{-3} (every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

AND every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

AND ordered?(node2_var!l) AND ordered?(node3_var!l))

I

[I] x!l <= nodel_var!l

{2} (every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

AND

every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

AND ordered?(node2_var!l) AND ordered?(insert(x!l, node3_var!l)))

Propositional simplification yields a single goal sequent.

Rule?

Applying propositional simplification,

this simplifies to:

ordered?_insert.2.2 :

{-i} ordered?(insert(x!l, node3_var!l))

[-2] (FDRALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

{-3} every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

{-4} every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

{-5} ordered?(node2_var!l)

{-6} ordered?(node3_var!l)

I

{I} every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

[2] x!l <= nodel_var!l

As before, we attempt to rewrite the formula 1 using the lemma ordered?_insert_step,

but as shown in [_-], this does not terminate the current t: ranch of the proof.

34

Rule? (rewrite "ordered?_insert_step")

Found matching substitution:

A gets node3_var!l,

x gets x!l,

pp gets (LAMBDA (y: T): node1_var!l <= y),

Rewriting using ordered?_insert_step,

this simplifies to:

ordered?_insert.2.2 :

[-I]

[-2]

[-3]

[-4]

[-5]

[-6]

I

{I} nodel_var!l <= x!l

[2] every((LAMBDA (y: T): nodel_var!l <= y),

[3] x!l <= nodel_var!l

ordered?(insert(x!l, node3_var!l))

(FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

ordered?(node2_var!l)

ordered?(node3_var!l)

insert(x!l, node3_var!l))

Wc are left with having to discharge one of tile conditions of tile rewrite rule, namely

nodel_var ! 1 <= x! 1. This follows froln the other consequent fornmla x! 1 <= nodel_var ! 1

and the observation that <= here is a linear ordering. The proof now requires that the type

information of <= be made explicit using the typepred command.

Rule? [(typepred "<=")

<= does not uniquely resolve - one of:

obt.<= : (total_order?[T]),

reals.< = : [[real, real] -> bool],

ordinals.<= : [[ordstruct, ordstruct] -> bool]

Restoring the state.

ordered?_insert.2.2 :

[-I] ordered?(insert(x!l, node3_var!l))

[-2] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-3] every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

[-4] every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

[-53 ordered?(node2_var!l)

[-6] ordered?(node3_var!l)

I

{I} nodel_var!l <= x!l

[2] every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

[3] x!l <= nodel_var!l

35

However, tile command (typepred "<=") does not suc(eed since the typechecker is un-

able to resolve among tile mauy possible references for <=. The more explicit command
(typepred "obt.<=") does succeed, l°

Rule? [(typepred "obt.<=")]

Adding type constraints for

this simplifies to:

ordered?_insert.2.2 :

{-i}
[-2]

[-3]

[-4]

[-52
[-6]
[-72

I
[1]
[2]
[3]

obt.<=,

total_order?[T](obt.<=)

ordered?(insert(x!l, node3_var!l))

(FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

ordered?(node2_var!l)

ordered?(node3_var!l)

nodel_var!l <= x!l

every((LAMBDA (y: T): nodel_var!l <= y), inse]t(x!l, node3_var!l))

x!l <= nodel_var!l

We then expand the definition of total_order?.

Rule? (expand "total_order?") _ 59

Expanding the definition of total_order?,

this simplifies to:

ordered?_insert.2.2 :

{-I} partial_order?(obt.<=) & dichotomous?(obt.<=_

[-2] ordered?(insert(x!l, node3_var!l))

[-3] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-4] every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

[-5] every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

[-6] ordered?(node2_var!l)

[-7] ordered?(node3_var!l)

.......

[1] nodel_var!l <= x!l

[2] every((LAMBDA (y: T): nodel_var!l <= y), inseit(x!l, node3_var!l))

[3] x!l <= nodel_var!l

'()Note that in PVS 2.1, the typechecking of input expressions to t,roof commands automatically resolves

such ambiguities in favor of expressions occurring in the goal sequent. Thus, this ambiguity is no longer
rel)orted.

36

Applying flatten removestheconjunctionin -1.

Rule? (flatten)]

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ordered?_insert.2.2 :

{-i} partial_order?(obt.<=)

{-2} dichotomous?(obt.<=)

[-3] ordered?(insert(x!l, node3_var!l))

[-4] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-5] every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

[-6] every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

[-7] ordered?(node2_var!l)

[-8] ordered?(node3_var!l)

I

[i] nodel_var!l <= x!l

[2] every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

[3] x!l <= nodel_var!l

160

Expanding the definition of dichotomous? yields the needed linearity proI_erty of the or-

<tering relation.

Rule? (expand "dichotomous?")]

Expanding the definition of dichotomous?,

this simplifies to:

ordered?_insert.2.2 :

[-1]

{-2}
[-3]

[-4]

[-5]
[-6]
[-7]
[-8]

I

[I]

[2]

[3]

partial_order?(obt.<=)

(FORALL (x: T), (y: T): (obt.<=(x, y) OR obt.<=(y, x)))

ordered?(insert(x!l, node3_var!l))

(FORALL (x: T):

ordered?(node2_var!1) IMPLIES ordered?(insert(x, node2_var!l)))

every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

every((LAMBDA (y: T): nodel_var!1 <= y), node3_var!l)

ordered?(node2_var!l)

ordered?(node3_var!l)

nodel_var!l <= x!l

every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

x!l <= nodel_var!l

When this linearity property is heuristically instantiated, we get a tautologous subgoal that

is polished off with prop, thus completing the proof.

37

Rule? (inst?) I

Found substitution:

y gets x!l,

x gets nodel_var!l,

Instantiating quantified variables,

this simplifies to:

ordered?_insert.2.2 :

[-13 partial_order?(obt.<=)

{-2} (obt.<=(nodel_var!1, x!l) OR obt.<=(x!l, nodel_var!l))

[-33 ordered?(insert(x!1, node3_var!l))

[-4] (FORALL (x: T):

ordered?(node2_var!l) IMPLIES ordered?(insert(x, node2_var!l)))

[-5] every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

[-6] every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

[-7] ordered?(node2_var!l)

[-8] ordered?(node3_var!l)

I

[i] nodel_var!l <= x!l

[2] every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

[3] x!l <= nodel_var!l

Rule? _

Applying propositional simplification,

This completes the proof of ordered?_insert.2.2.

This completes the proof of ordered?_insert.2.

Q.E.D.

Run time = 12.32 secs.

Real time = 1916.88 secs.

The above exercise illustrates several aspects of PVS proofs of theorems involving

abstract datatypes. The induct strategy automatically ._mploys the datatype i,lduction

scheme. Most of the datatype axioms need never be exp icitly invoked in a proof the

above proof does not mention any datatype axioms.

More general lessons about PVS are also illustrated by the above exercise. Primary

among these are the use of undo to backtrack in a proof, the use of expand and rewrite to

rewrite using definitions and rewrite rules, assert to simplify using the decision procedures

and the a_sertions in the sequent, and inst? to heuristicall3 instantiate a suitably quantified

variable using matching.

We now exalnine a Inore autolnated proof of tile same theorem.

38

10.2 A Semi-automated Proof

WeCallnowretry tile proofof the theorem ordered?_insert using a more high-level strat-

egy defined in PVS. This strategy is called induct-and-simplify. It applies tile induct

strategy and then tries to complete the proof by repeatedly skolemizing and instantiating

quantifiers, and applying the decision procedures, rewrite rules, and propositional simplifi-

cation. We emi)loy as rewrite rules, the lemlna ordered?_insert_step and any definitions

used directly or indirectly in the statement of the theorem. The script shown t)elow has

been automatically generated from the induct-and-simplify (:onmmnd up to the subgoal

in [_. The first segment of the proof shows the setting up of the rewrite rules mentioned

in the induct-and-simplify command.

ordered?_insert :

.......

{I} (FORALL (A: binary_tree[T], x: T):

ordered?(A) IMPLIES ordered?(insert(x, A)))

Rule? (induct-and-simplify "A" :rewrites "ordered?_insert_step")

The internal steps of the strategy are not displayed t)ut any applications of rewrite rules

are indicated in the proof commentary. This rewriting comnmntary (:an 1)e turned off using

the proof (:onlmand (rewrite-msg-off) or controlled using the PVS Emacs command M-x

set-rewrite-depth. The rewriting in the base case is shown below ill [-_].

ordered? rewrites ordered?(leaf)

to TRUE

insert rewrites insert(x!l, leaf)

to node(x!l, leaf, leaf)

every rewrites every((LAMBDA (y: T): y <= x!l), leaf)

to TRUE

every rewrites every((LAMBDA (y: T): x!l <= y), leaf)

to TRUE

ordered? rewrites orderedF(node(x!l, leaf, leaf))

to TRUE

The rewriting steps occurring in ttle induction case are shown in [_

39

ordered? rewrites ordered?(node(nodel_var!l, node2_var!l, node3_var!l))

to (every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

AND every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

AND ordered?(node2_var!l) AND ordered?(node3_var!l))

insert rewrites insert(x!l, node(nodel_var!l, node2_var!l, node3_var!l))

to (IF x!l <= nodel_var!l

THEN node(nodel_var!l, insert(x!l, node2_v£r!l), node3_var!l)

ELSE node(nodel_var!l, node2_var!l, insert(x!l, node3_var!l))

ENDIF)

ordered? rewrites

ordered?(node(nodel_var!l, insert(x!l, node2_var!!), node3_var!l))

to (every((LAMBDA (y: T): y <= nodel_var!l), insert(x!l, node2_var!l))

AND every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

AND ordered?(insert(x!l, node2_var!l)) AND ordered?(node3_var!l))

ordered? rewrites

ordered?(node(nodel_var!l, node2_var!l, insert(x!J, node3_var!l)))

to (every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

AND

every((LAMBDA (y: T): nodel_var!l <= y), i_sert(x!l, node3_var!l))

AND ordered?(node2_var!l) AND ordered?(insert(x!l, node3_var!l)))

ordered?_insert_step rewrites

every((LAMBDA (y: T): y <= nodel_var!l), insert(x[l, node2_var!l))

to TRUE

One subgoal results from tile induct-and-simplify command as shown in [-_. This sub-

goal is nearly the same as subgoal ordered?_insert.2.2 in [_ from the previous proof

attempt. This means that tile induct-and-simplify strategy completed the base case and

most of the induction branch of the proof automatically. The subgoal in 66 corresponds to

the case of insertion into the right subtree. The strategy failed to complete this branch of the

proof because it was unable to apply the rewrite rule ordered?_insert_step automatically.

This at)plication failed because one of the conditions of the rewrite rule, nodel_var!l <=

x ! 1, could not l)e discharged. This condition follows from fornlula number 1 in 66 and the

linearity of the <= relation. The latter constraint is, howe_er, buried in the type constraint

(total_order?) of <=. This information has to be made explicit I)efore the proof can be

successfully completed.

4O

By induction on A, and by repeatedly rewriting and simplifying,

this simplifies to:

ordered?_insert :

{-i} ordered?(insert(nodel_var!l, node2_var!l))

{-2} ordered?(insert(x!l, node3_var!l))

{-3} every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

{-4} every((LAMBDA (y: T): nodel_var!l <= y), node3_var!l)

{-5} ordered?(node2_var!l)

{-6} ordered?(node3_var!l)

I

{I} x!1 <= nodel_var!l

{2} every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

The rest of proof can be completed interactively as in tile previous proof attempt but

we atteinpt a slightly different sequence of steps this time. The first step is identical to that

in [_ where the ordered?_insert_step lemma is mamlally invoked as a re,write rule using

the rewrite strategy.

Rule? I (rewrite "ordered?_insert_step")]

Found matching substitution:

A gets node3_var!l,

x gets x!l,

pp gets (LAMBDA (y: T): nodel_var!l <= y),

Rewriting using ordered?_insert_step,

this simplifies to:

ordered?_insert :

[-I] orderedT(insert(nodel_var!l, node2_var!l))

[-2] ordered?(insert(x!1, node3_var!l))

[-3] every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

[-4] every((LAMBDh (y: T): nodel_var!l <= y), nodeS_var!l)

[-5] ordered?(node2_var!l)

[-6] ordered?(node3_var!1)

I

{I} nodel_var!l <= x!1

[2] x!l <= nodel_var!l

[3] every((LAMBDA (y: T): node1_var!l <= y), insert(x!l, node3_var!l))

The next step is also identical to that of [_ where the type constraints for the <= operator

are explicitly introdu(:ed into the sequent.

41

Rule? (typepred "obt.<=")

Adding type constraints for obt.<=,

this simplifies to:

ordered?_insert :

{-I} total_order?[T](obt.<=)

[-2] ordered?(insert(nodel_var!l, node2_var!l))

[-3] ordered?(insert(x!l, node3_var!l))

[-4] every((LAMBDA (y: T): y <= nodel_var!l), node2_var!l)

[-5] every((LAMBDA (y: T): nodel_var!l <= y), nod_3_var!l)

[-6] ordered?(node2_var!l)

[-7] ordered?(node3_var!l)

I

[I] nodel_var!l <= x!l

[2] x!l <= nodel_var!l

[3] every((LAMBDA (y: T): nodel_var!l <= y), insert(x!l, node3_var!l))

The main difference from the previous proof attempt is that we now invoke a somewhat

powerflll variant of the all-purpose grind strategy where the :if-match flag is set to all

indicating that all matching instances of any quantified formulas are to be used. If we

do not supply this option, tim heuristic instantiator picks the wrong instance siuce the

type constraints for <= themselves provide matching instances for the one relevant type

constraint, namely, dichotomous? (obt. <=).

42

Rule7 (grind :if-match all)]69

reflexive? rewrites reflexive?(obt.<=)

to FORALL (x: T): obt.<=(x, x)

transitive? rewrites transitive?(obt.<=)

to FORALL (x: T), (y: T), (z: T): obt.<=(x, y) _ obt.<=(y, z) => obt.<=(x, z)

preorder? rewrites preorder?(obt.<=)

to FORALL (x: T): obt.<=(x, x)

& FORALL (x: T), (y: T), (z: T):

obt.<=(x, y) & obt.<=(y, z) => obt.<=(x, z)

antisymmetric? rewrites antisymmetric? (obt. <=)

to FORALL (x: T), (y: T): obt.<=(x, y) & obt.<=(y, x) => x = y

partial_order? rewrites partial_order?(obt.<=)

to (FOKALL (x: T): obt.<=(x, x)

& FORALL (x: T), (y: T), (z: T):

obt.<=(x, y) & obt.<=(y, z) => obt.<=(x, z))

& FORALL (x: T), (y: T): obt.<=(x, y) _ obt.<=(y, x) => x = y

dichotomous? rewrites dichotomous?(obt.<=)

to (FOKALL (x: T), (y: T): (obt.<=(x, y) OR obt.<=(y, x)))

total_order? rewrites total_order?[T](obt.<=)

to ((FORALL (x: T): obt.<=(x, x)

& FOKALL (x: T), (y: T), (z: T):

obt.<=(x, y) _ obt.<=(y, z) => obt.<=(x, z))

FOKALL (x: T), (y: T): obt.<=(x, y) & obt.<=(y, x) => x = y)

& (FOKALL (x: T), (y: T): (obt.<=(x, y) OR obt.<=(y, x)))

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

Run time = 48.86 secs.

Real time = 230.49 secs.

Tile above seini-automated proof attempt ilhlstrates tile power that is gained from

combining high-level strategies (e.g., induct-and-simplify and grind) to handle the easy

portions of a proof with low-level manual interaction to carry out the more delicate steps.

Note that the inner workings of these strategies which are hidden in the above proof can

be observed by invoking them with a $ suffix as in induct-and-simplify$ and grindS.

The proofs of the lemmas ordered?_insert_step in [] and search_insert shown

in [_ below (:all be completed autoinatically by tile single conlnland:

(induct-and-simplify "A")

43

search(x, A): KECURSIVE hool =

(CASES A OF

leaf: FALSE,

node(y, B, C):

ENDCASES)

MEASURE size(A)

(IF x = y THEN TRUE

ELSIF x<=y THEN search(x, F)

ELSE search(x, C)

ENDIF)

search_insert: THEOREM search(y, insert(x, A)) = (x = y 0R search(y, A))

170

10.3 Proof Status

To conclude the development of binary trees and ordered binary trees, we can apply tile

PVS Emacs command M-x prt to recheck all the proofs and print out the proof status. 11

Tile output of this (:ommand is shown below. It indicates that not only have all the theorems

been proved but so have any non-axioms (lemmas, TCCs, etc.) used in any of these proofs.

Proof summary for theory obt

ordered?_TCCl .. proved - complete

ordered?_TCC2 .. proved - complete

insert_TCCl .. proved - complete

insert_TCC2 .. proved - complete

ordered?_insert_step proved - complete

ordered?_insert .. proved - complete

search_insert .. proved - complete

Theory totals: 7 formulas, ? attempted, 7 succeeded.

171

11 Built-in Datatype Simplifications

As indicated at the outset, the primary advantage of u_,ing abstract datatypes in PVS is

that a lot of knowledge about such datatypes and their operations is built into the system.

To illustrate, the sort of datatype simplifications that are btilt into PVS, consider tim theory

binary_props shown below.

1*The command M-x status-proof-theory or M-x spt (:an })e tse(I to get th(, proof status without

r('(:he(:king the proofs.

44

binary_props[T : TYPE] : THEORY

BEGIN

IMPORTING binary_tree_adt[T]

A, B, C, D: VAR binary_tree[T]

x, y, z: VAR T

leaf leaf : LEMMA leaf?(leaf)

node_node : LEMMA node?(node(x, B, C))

leaf_leafi: LEMMA A = leaf IMPLIES leaf?(A)

node_nodel: LEMMA A = node(x, B, C) IMPLIES node?(A)

val node: LEMMA val(node(x, B, C)) = x

leaf node: LEMMA NOT (leaf?(A) AND node?(A))

node_leaf: LEMMA leaf?(A) OR node?(A)

leaf_ext: LEMMA (FORALL (A, B: (leaf?)): A = B)

node ext: LEMMA (FORALL (A : (node?)) :

node(val(A), left(A), right(A)) = A)

END binary_props

All the lemmas excluding the last one, node_ext, are provable by tile command (then

(skosimp) (assert)). This means that tile assert rule tmilds in several simplifications. In

the case of leaf_leaf and node_node, assert can reduce the application of a recognizer to a

constructor expression to either TRUE or FALSE. In tile case of leaf_leaf i and node_node 1,

it even can do this simplification across an equality. The reason for this simplification is

that subtype information is asserted to the decision procedures so that when A = node (x,

B, C) is asserted to the decision procedures, so is node? (node (x, B, C)), and node? (t) is

deduced by congruence closure in the decision procedures. The simplifications in leaf_leaf

and node_node, but not leaf_leafl and nodemodel, can also be carried out l)y the PVS

beta-re(tuction rule beta since this rule does not make use of equality information.

The lenuna valmode illustrates that the application of an accessor to a constructor

expression yields the appropriate field of the constructor expression. This simplification

can also be done t)y the beta rule.

The simplification implicit in leaf_node is more subtle and captures the exclusivity

45

propertyof abstractdatatypes. Here, from an antecedentformulaleaf?(A), assert is
ableto simplifytile expressionnode?(A) to FALSEsincem,datatypeexpressioncansatisfy
tworecognizers.Thesimplificationimplicit innode_leaf ,:apturesthe inclusivityproperty
of abstractdatatypes. Here,assert is ableto determir_ethat a recognizerholdsof an
expressionby demonstratingthat all tile other recognizersare falseon the expression.In
general,whenconfrontedwith theapplicationof a recognizerr to a datatype expression e,

the simplifier evaluates the truth value of each recognizer of that datatype when applied to

the given expression using the decision procedures. If r(e) is determined to be TRUE by the

decision procedures, then r(e) is obviously simplified to TRUE by the simplifier. If for some

other re(:ognizer r', r'(c) is determined to be TRUE by the decision procedures, then r(c) is

simplified to FALSE. If for all recognizers r' distinct from r, r'(e) is determined to be FALSE,

then r(e) is simplified to TRUE.

The lemma leaf_ext essentially illustrates that for constructors such as leaf that have

no accessors, there is no distinction between the forms leaf?(A) and A = leaf. It also

illustrates how the subtype information is used implicitly to simplify h -- B to TRUE.

The lemma node_ext is the only one that cannot be proved by the command (then

(skosimp) (assert)). Here, this command simplifies tt:e goal sequent to a single sul)-

goal that is then prove(t by means of tile (apply-exten3ionality) command. This il-

lustrates that the extensionality axiom for datatypes is huilt into tile t)rimitive PVS rule

extensionality and is also eml)h)yed by the strategies replace-extensionality and

apply-extensionality.

12 Some Proof Strategies

We briefly explain the definitions of the proof strate_ ies induct-and-simplify and

grind that were used in Section 10. The PVS manutls [OSR93] provides more de-

tails. These strategies are quite useful for proofs of d_ttatype-relate(t theorems. The

induct-and-simplify strategy takes an argument list of the form:

(var &optional (fnum i) name (defs t) (if-match best)

theories rewrites exclude)

where

• vat is the induction variable and is the only require, l argument

• fnum is the formula number of the induction formul_ where the induction variable is

universally quantified; it defaults to 1

46

• name names tile induction scheme to be employed

• def s indicates which definitions of constants used ill the current goal are to be installed

as rewrite rules; it defaults to t indicating that all relevant definitions must be installed

• if-match instructs the heuristic instantiator to use none, one, all, or tile best matching

instantiation for a quantified formula; it defaults to best

• theories is the list of theories to be installed as rewrite rules

• rewrites is the list of formulas or definitions that are to be installed as rewrite rules,

and

• exclude is a list of formulas or definitions that should i)e removed fi'om the rewrite

rule base

Tile body of thedefinitionofthe strategy has the fornl:

(then

(install-rewrites$:defs defs :theories theories :rewrites rewrites

:exclude exclude)

(try (induct var fnum name)

(then (skosimp*) (assert) (repeat (lift-if))
(repeat*

(then (assert) (bddsimp) (skosimp*)

(if if-match (inst? :if-match if-match) (skip)) (lift-if))))

(skip)))

Tile induct-and-simplify strategy first installs tile rewrites using install-rewrites$

on defs, theories, rewrites, and exclude. It then introduces the appropriate instance

of the induction schelne using induct. Then the strategy carries out one round of skolem-

ization (introduction of new constants for outermost universally l)ouud variables) using

skosimp*, rewriting and simt)lification using assert, and repeated lifting of condition-

als to the top lewd using lift-if. Following this, there are repeated rounds of rewrit-

ing/siml)lification, t)ropositional simplification, skolemization, heuristic instantiation, and

if-lifting until each resulting sut)goal has stabilized.

The grind strategy is similar. It takes the following argument list:

(&optional (defs !) theories rewrites exclude (if-match t) (updates? t))

where the only new argument from induct-and-simplify is updates? which when set to

NIL blocks the if-lifting of update applications of the form (A WITH [(i) := b])(j) to

(IF i = j THEN b ELSE A(j) ENDIF).

Ttle body of the definition of grind is:

47

(then

(install-rewrites$:defs defs :theories theories rewrites rewrites

:exclude exclude)

(then (bddsimp) (assert)) (replace*)

(reduces :if-match if-match :updates? updates?))

Here the rewrite rules are installed using install-rewrites$, and followed by propo-

sitional simplification, rewriting and simplification, equality replacement, followed t)y re-

peated applications of these steps along with heuristic imtantiation and if-lifting.

It should be clear from the above definition that it is fairly straightforward to write

powerful proof strategies using the constructs provided by the PVS proof checker.

13 Limitations of the PVS Abstract Datatype Mechanism

The abstract datatype mechanism of PVS is intended to capture a fairly large class of

datatypes whose axioms can be easily and systematically generated. This class contains all

the freely generated term algebras over an order-sorted sigaature which includes the various

stack and tree-like data structures. It excludes such impor Lant datatypes as integers (which

axe built into PVS), bags, sets, and queues. It also exchtdes various lazy data stru(:tures

such as lazy lists or streams. These latter structures can)e introduced by implementing a

similar mechanism for introducing co-datatypes as for daiatypes.

The DATATYPE mechanism is a primitive construct of PVS and is not merely a defini-

tional extension of PVS. It therefore has the disadvantage that it is not possible to prove

general theorems about all recursive datatypes in the way that one can about all inductive

definitions given as least fixed points. For example, Bird's fusion theorem [Bir95] cannot

I)e uniformly I)roved for all recursive datatypes an(t has to be proved for each datatype

individually [Sha96].

14 Related Work

There are a number of algebraic specification languages such as Larch [GJMW93],

OBJ [FGJM85], and ACT-ONE [EM85] that can be us_.d to specify abstract datatypes

but these specifications axe manually axiomatized and no_ automatically generated from a
succinct description as is the case with the PVS DATATYP[construct. The axioms are used

as rewrite rules so that there is no built-in automation ,)f the simplification of datatype
expressions.

48

TheprogramminglanguageML [MTH90]hasa similar recursivedatatypemechanism.
UnlikethePVSnmchanism,theML constructallowsarbitrary formsof recursion.As noted
earlier,suchrecursivetype definitionsdonot alwayshaw:a properset-theoreticsemantics.
Gunter [Gun93]explainshow certainrecursivedatatypesthat are admissiblein ML can
leadto unsoundnessesif admittedinto a higher-orderlogic.

TheHOLsystemhasa mechanismfor definingabstractdatatypes[Me189]that issome-
whatmorerestrictivethan that of PVS:therearemoreconstraintson recursionand HOL
lacksthe usefiflnotionof subtypingthat is availablein PVS.However,the HOL construct
is definitionalin that a recursivelyspecifieddatatypeis definedin termsof the prilnitiw;
typeconstructorsavailablein HOL. In particular,anynewlydefinedrecursivedatatypeis
shownto be inte,rpretableasa subsetof someexistingdatatypebasedon finitely branching
trees. The axiomsgeneratedfi'omthe datatypedeclarationareshownto besoundwith
respectto this interpretation.Isabelle/ZFandIsabelle/HOLboth havea similarbut more
generalfacility for definingdatatypesand co-datatypes[Pau97]. The Isabelledatatype
mechanismalsoac(:omodatesinfinitely t)ranchingtrees.The Coqsystemhasa facility for
definingre(:ursiveandco-re,cursive(tatatypeswhich,like PVSandunlikeHOLandIsabelle,
isa l)rimitive constructof the C()(t logic [Gim96].

The shellprinciph_use(tin the Boyer-Mooretheoremprtwer [BM79,BM88] is quite
similar to the PVSDAThTYPEmechanism.It permitsrecursive(latatypesto I)especifiedby
meansof constructors,accessors,and rect)gnizers.Like PVS, the axit)mscorrespondingto
a shelldatatyt)eare t)uilt into the inferencemechanismsof the theoremprover.The shell
t)rincii)le,however,hasmanyseriouslimitations. It is comt)licate(tt)y the lackof typesor
subtypesin the Boyer-Mooreh)gic.The shellprincipleonly allowsoneconstructoranda
bottom object thusruling out a greatmanyusefifldatatyl)eswherenmltiple,constructors
art;required.

15 Conclusions

We have described the, DATATYPE mechanism of PVS anti demonstrated its use in proof

construction. This mechanism cat)tures a large class of commonly used tyt)e definitions

within a succinct notation. A numt)er of facts ai)out these automatically generated abstract

datatyl)es are built into the inference mechanisms of PVS so that it is possible to obtain

a significant degree of automation when proving the, orems involving datatypes. The high

level of automation in the low-level inference mechanisms in PVS makes it easy to define

powerful and flexible high-level proof strategies.

Acknowledgements. The, design and imi)lementation of PVS was directed t)y John

Rushby of the SRI Coml)uter St:ience Laboratory. He, along with Rick Butler of NASA

49

and MandayamSrivas,suggestedseveralimprovementsto this document.DonaldSyme
of Cambridge University carefully proofread the document and gave numerous helpful sug-

gestions. We are also grateful to Ulrich Hensel of TU l)resden for his as yet unheeded

suggestion to incorporate corecursive datatypes.

5O

Bibliography

[Bir95]

[BM79]

[BM881

[EM8]

[FGJM85]

[Gin196]

[GJMW93]

[GMW79]

Richard S. Bird. Functional algorithm design. In Bernhard M611er, editor,

Mathematics of Program Construction '95, nunlber 947 in Lecture Notes in

Conq)uter Science, pages 2 17. Springer Ve,rlag, 1995.

R. S. Boyer and J S. Moore. A Computational Logic. Acadenfic Press, New

York, NY, 1979.

R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,

New York, NY, 1988.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Sl)ringer-

Verlag, Berlin, 1985.

Kokichi Futatsugi, .Joseph Goguen, Jean-Pierre Jouannaud, and Jos6 Meseguer.

Princil)les of OBJ2. In Brian K. Reid, editor, 12th A CM Symposium on Princi-

ples of Programming Languages, pages 52 66. Association for Conllmting Ma-

chinery, 1985.

Eduardo Gimdnez. A tutorial on recursive types in Coq. Draft. Available

froln ftp ://cri. ¢ns-lyon. fr/pub/LIP/COO/76.1, beta/doc/RecTutorial.

ps.gz, March 1996.

John V. Guttag and James J. Horning with S. J. Garland, K. D. Jones,

A. Modet, an(t J. M. Wing. Larch: Languages and Tools for Formal Speci-

fication. Texts and Monographs in Comt)uter Science. Springer Verlag, 1993.

M. Gordon, R. Milner, and C. Wadsworth. Edinbuwh LCF: A Mechanized Logic

of Computation, volume 78 of Lecture Notes in Computer Science. Springer-

Verlag, 1979.

51

[Gun93]

[H J97]

[Me189]

[MTH90]

[OSR93]

[Pau97]

[P6t67]

[Rus95]

[Sha96]

[WW93]

Elsa L. Gunter. Wily we can't have SML style datatype declarations in HOL.

In L. J. M. Claesen and M. J. C. Gordon, editors, Higher Order Logic Theorem

Proving and its Applications, number 20 in IFIP Transactions A, pages 561-568.
North-Holland, 1993.

Ulrich Hensel and Bart Jacobs. Proof principles for datatypes with iterated

recursion. In Category Theory in Computer Science, 1997. Also appears as

Technical Report CSI-R9703, Computing Science Institute, Faculty of Mathe-

matics and Infornmtics, Catholic University c,f Nijmegen.

Thomas F. Melham. Automating recursive type definitions in higher order

logic. In G. Birtwistle and P. A. Suhrahmauyaxn, editors, Current Trends in

Hardware Verification and Theorem Proving, pages 341-386, New York, NY,

1989. Springer-Verlag.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT

Press, 1990.

S. Owre, N. Shankar, and J. M. Rushby. User Guide for the P VS Specifica-
tion and Verification System. Computer Seieni'e Laboratory, SRI International,

Menlo Park, CA, February 1993. Three volumes: Language, System, and Prover

Reference Mammls; A new edition for PVS V;_.rsion 2 is expected in 1998.

L. C. Paulson. Mechanizing coinduction and :orecursion in higher-order logic.

Journal of Logic and Computation, 7:175 204, March 1997.

R. Pdter. Recursive Functions. Academic Press, New York, NY, 1967.

John Rushby. Proof Movie II: A proof with FVS. Te(:hnical rep<)rt, ComI)uter

Science Laboratory, SRI International, Menlo Park, CA, 1995. Available, with

specification files, at http ://www. csl. sri. c,,m/movie,html.

N. Shankar. Steps towards mechanizing program transformations using PVS.

Science of Computer Programming, 26(1 3):33 57, 1996.

Debora Wel)er-Wulff. Proof Movie a proof with the Boyer-Moore prover. For-

real Aspect.s" of Computing, 5(2):121 151, 199_.

52

REPORTDOCUMENTATIONPAGE FormApproved
OMBNo. 0704-0188

-m_'_-m,_q_m_,.,mm_,mpmu,_a.ormnev, qngumoowcoono1u'Tmrmlmon. :_nocommentsregardi _is burden estimate or any other asoe_ f

,_,,w_y, , ,nut , . imo ;o me un'ce or Management ano uuoget P.apenvor< Heouctx_ Project (0704-0188), Wutlington. DC 20503.

1. AGENCY USE ONLY (L.;mv,. Ma.k) 2. FIEPORT DATE

November 1997
4. TITLE AND SUI=_I_I.E

Abstract Datatypes in PVS

s. AUTHOR(S)

Sam Owre and Natarajan Shankar

7. PERFOR;,;;NGORGANIZATIONNAME(S)ANDAD_RE_.'.'_ES)

Computer Science Laboratory
SRI Intemational

333 Ravenswood Avenue
Menlo Park CA 94025

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton VA 23681-2199

11. SUPPLEMENTARY NOYF..3

Langley Technical Monitor: Paul S. Miner
Final Report

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

NAS1-18969

WL] 519-50-11-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING I MONITORING

AGENCY REPORT NUMBER

NASAJCR-97-206264

121.bi$¥.|BUTIONI AVAILABILITYSTATEMEN'T

Unclassified - Unlimited

Subject Category 61
Distribution: Nonstandard

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. AB_-T-rtACT (Maximum 200 words)

PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs.
This document deals primarily with the abstract datatype mechanism in PVS which generates theories
containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract

datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a
PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as
a subtype of binary trees where the ordering relation is also taken =_sa parameter. We define the operations of

inserting an element into, and searching for an element in an order:_ binary tree; the bulk of the report is
devoted to PVS proofs of some useful properties of these operatiorls. These proofs illustrate various
approaches to proving properties of abstract datatype operations. 1"heyalso describe the built-in capabilities of
the PVS proof checker for simplifying abstract datatype expressions.

14. SUBJECT '_P..HMS

Specification Languages, Abstract Datatypes, Automated Proof Ch .=cking.

17. SEC..bm_ 1' _FICATION

OF REPORT

Unclassified

NSN 7540-01-280--5500

!18. _F..Ci.JmTY' CLASSIFICATION 19. SECURrr_ CLASSIFICATION
OF THIS PAGE

Unclassified
OF ABSTF ACT

Unclas_ ifled

15. NUMBER OF PAGES

59

16. PRICE CODE

A04
20. LIMITATION OF ABSTRACT

StandardForm=98(J_ev.2-_)
Pruorbed by/UtSI Sld. Z_-18
2_-102

